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Decomposition-learning-based Output Tracking to Simultaneous Hysteresis and
Dynamics Control: High-speed Large-range Nanopositioning Example
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Abstract—In this paper, a decomposition-learning-based out-
put tracking approach is proposed to compensate for both
hysteresis and dynamics effects on output tracking of hysteresis
systems such as smart actuators. Simultaneous hysteresis and
dynamics control (SHDC) is needed to fully exploit smart or
intrinsically soft actuators/sensors for high-speed, large-range
positioning/tracking. It remains still, however, as a challenge to
achieve SHDC with both precision (performance) and robustness
in general output tracking (i.e., not restricted to periodic/repeated
operations), and without complicity in modeling and controller
design and/or online implementation. The proposed approach
aims to address these challenge, by utilizing libraries of input-
output elements constructed offline to online decompose the
partially-known (i.e., previewed) desired output trajectory, and
synthesize the control input. Iterative learning control techniques
are used a priori to obtain the input elements each tracking
the corresponding output elements accurately, and the Preisach
modeling of hysteresis is employed to obtain the combination
coefficients of the synthesized control input. An experimental
implementation to high-speed, large-range nanopositioning using
piezoelectric actuator is presented to demonstrate the efficiency
and efficacy of the proposed approach in achieving SHDC.

I. INTRODUCTION

Simultaneous hysteresis and dynamics compensation
(SHDC) is needed in the control of smart materials
or intrinsically soft materials, whose input to output
mapping presents both hysteresis and vibrational dynamics
characteristics. These actuators/sensors provide unique
positioning accuracy and/or motion flexibility and compliance,
thereby, becoming enabling tools in emerging areas ranging
from nanoscale imaging/manipulation [1] to soft robotics
[2]. Full exploitation of these actuators/sensors to meet
the needed positioning/tracking, however, demands SHDC.
Although various techniques [3] have been proposed for the
control of smart actuators, it still remains as a challenge
to achieve SHDC with both precision (performance) and
robustness in general output tracking (i.e., not restricted
to periodic/repeated operations), and without complicity in
modeling and controller design and/or online implementation.

Further development is needed to achieve SHDC in
various applications, particularly in high-speed, large-range
output tracking. Both feedback [4] and feedforward [3]
control techniques have been developed for controlling
hysteresis systems such as piezoelectric actuators. For
example, robust-control techniques [5] have been proposed
to exceed conventional PID-feedback whose performance has
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been largely limited by the low-gain margin of the system.
However, the a priori knowledge of hysteresis was not
explored for improving the control performance, particularly,
at high speed. Although model of hysteresis can be utilized
through an adaptive control framework [6], [7], the modeling
process is rather involved, and the design and implementation
of the high-order controller can be complicated. Moreover, the
tracking performance of feedback-based techniques is limited
by the nonminimum-phase zeros (NMP) of the system. Such a
NMP-caused limitation in output tracking has been addressed
through the development of the stable-inversion-based
feedforward control approach [8]. Similar idea of inverse has
also been utilized to account for hysteresis effect, by capturing
the hysteresis, for example, via the Preisach model [9] or
the Prandtl-Ishlinskii model [10], thereby, arriving at SHDC.
The inversion-based feedforward control approach, however,
requires a careful and complicated modeling process that
is prone to modeling errors, and the feedforward controller
obtained can be sensitive to system variations, not efficient in
accommodating the usually quasi-static uncertainty/variation
in systems like smart actuators. Thus, it is challenging to
account for both the hysteresis and the dynamics effects, both
effectively and efficiently.

These issues related to NMP-zeros, robustness and complexity
can be largely alleviated through the development of iterative
learning control (ILC) techniques [11], [12], [13], as the effect
of NMP-zeros is avoided as the entire desired trajectory is
known a priori, and SHDC can be achieved through iterative
learning [11]. Moreover, the variations in hysteresis and/or
dynamics—of quasi-static nature—can be accounted for via
few iterations with minor to no loss of performance, thereby,
avoiding the performance-robustness trade-off. Although
superior tracking performance has been demonstrated [12],
[14] and applied in various nanopositioning applications
[15], [1], the ILC framework is limited to repetitive/periodic
operations, with the entire trajectory completely known a
priori and repeatedly tracked. Increasingly-demanding control
needs in emerging applications such as soft robotics [2],
however, require SHDC in non-repetitive, general output
tracking with the desired trajectory not completely known
or even online generated. Thus, there exist needs to address
these limitations of ILC for SHDC of hysteresis systems.

The main contribution of this work is the development
of a decomposition-learning-based output tracking (DLOT)
technique to achieve SHDC. Built upon the recently-developed
almost-superpositioning of Hammerstein systems (ASHS)
[16], the proposed approach provides an avenue to exploit
and integrate offline, a priori learning in general online track-
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Fig. 1: Schematic illustration of the DLOT technique to
hysteresis system consisting of a hysteresis operation H[·]
followed by a linear time invariant dynamics Φ(·), consisting
of off-linear library construction via ILC and online output
decomposition and input synthesis.

ing/regulation, by utilizing libraries of input-output elements
constructed offline to online decompose a partially-known
(i.e., previewed) desired output trajectory and synthesize the
control input, and further enhancing the robustness and perfor-
mance of the proposed approach through an online adaptation
scheme. Particularly, we present the proposed technique in
a step-by-step format with practical guidance, followed by
an experimental implementation to demonstrate its efficiency
and efficacy. The offline learning preserves the advantages of
ILC in attaining precision tracking in practical implementation
while accounting of quasi-static system variations/changes
with little to no loss of tracking precision, and avoiding the
NMP-zero effect on tracking performance. Then the library-
based decomposition-synthesis mechanism not only achieves
SHDC without complexity in modeling, (controller) design
and/or implementation, but also lends and extends ILC to
general output tracking of hysteresis systems, not limited to
repetitive/periodic cases only. Finally, the proposed approach
offers efficient online implementation without involving heavy
computation. Particularly, the experimental results show that
the decomposition-synthesis process to update the control
input is only needed at sparse time instants–a rather small
fraction (less than 1%) of the total sampling instants of
the tracking. Therefore, the proposed approach provides an
effective avenue to decouple “training” from “execution” in
output tracking, and extends the notion of decomposition and
learning [17], [18], [19], [20] from linear systems to hysteresis
systems, thereby, pointing to a promising avenue to alleviate
the complexities and challenges in modeling and control of
hysteresis systems.

II. DECOMPOSITION-LEARNING-BASED OUTPUT
TRACKING (DLOT) OF HYSTERESIS SYSTEMS

Built upon the almost superpositioning principle [16], the
key is to achieve SHDC in large-range, high-speed trajectory
tracking. We start with capturing the input-output mapping of
a hysteresis system, u(·)→ y(·) : < → <, as a Hammerstein
model (see Fig. 1), i.e.,

y(t) = Φ(H([u(t)])), as in (1)
where H[·] : u(t)→ v(t), and Φ(·) : v(t)→ y(t) as in

v(t) = H[u(t)], y(t) = Φ(v(t)), (2)

are the rate-independent nonlinear hysteresis operator and the
linear time invariant (LTI) dynamics of the system, respec-
tively, i.e., Φ(·) is the impulse response of the LTI dynamics.
Specifically, we consider that the nonlinear hysteresis operator
can be described by a Preisach model, and the desired output
trajectory being partially known, i.e., the preview-based output
tracking:

Assumption 1. The inverse mapping of the hysteresis operator
H[·] (from the output to the input) can be described by a
Preisach model as

u(t) =

∫∫

α≥β

µ(α, β)γαβ [v(t)]dαdβ, (3)

where α, β ∈ <, µ(α, β) is the weighting function, and γαβ [·]
is the elemental hysteresis operator, respectively.

Assumption 2. The desired output trajectory yd(t) is smooth,
and at any given time instant tc, yd(t) is known for t ∈ [tc, tc+
Tp] and a given preview time Tp <∞.

The above inverse representation of the hysteresis operator
H[·] as the Preisach model (as in [21]) is to simplify the
derivation later, and it can be verified that the Preisach model
in Eq. (3) satisfies the following properties:

Proposition 3. The Preisach model H[·] is bounded input,
bounded output (BIBO) stable and bi-Lipschitz, i.e., for any
given continuous input u(t), there exists a constant LH ∈ <+

such that for any given t1, t2 ∈ <,
1

LH
|u(t1)− u(t2)| ≤ |v(t1)− v(t2)| ≤ LH |u(t1)− u(t2)| .

(4)
Moreover, the Preisach model H[·] is nonlinear almost every-
where, i.e., for any given constants r, c ∈ <, m({t|H[u(t)] =
r · u(t)} = 0) for any given u(·) ∈ < satisfying m({t|u(t) =
c}) = 0 (m(Z): the Lebesgue measure of measurable set
Z ⊂ <), and v(t) = H[u(t)] = 0 if and only if u(t) = 0.

As the above Lipschitz constant LH is range dependent, i.e.,
LH(Av) with Av the amplitude of the hysteresis output v(t),
use of a range dependent LH(Av) is preferred over a global
constant instead.
The above Proposition implies that the ASHS principle [16]
holds in the hysteresis system above, i.e., the response of
system (1) to a linear combination of distinct inputs, as the
number of the inputs increases, approaches to the linear com-
bination of the responses each corresponding to the respective
inputs, provided that the inputs satisfy some smooth conditions
(Readers are referred to [16] for the detail). The number of
input/output elements required by the almost superposition
principle can be quantified [16] by using the element density,
D∗H, defined as the number of inputs, M∗ per unit effective
length of the trajectory,

D∗H =

⌈
M∗

TH
∗

⌉
(5)

where, respectively, d·e denotes the ceiling function, and TH
∗

is the effective trajectory length defined as
TH
∗ = t∗em,f − t∗em,i (6)

with t∗em,f and t∗em,i the time instant of the last and the
first local extrema (minima or maxima) of the trajectory to
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be decomposed (e.g., the intermediate desired output vd(·)
restricted to the decomposition period).

The central idea of the proposed DLOT technique is to
use libraries of input-output elements constructed offline a
priori to online decompose the previewed desired output and
synthesize the control input (see Fig. 1) at some sparse instants
only—called the decomposition instants. Specifically, the jth

decomposition instant, tdec,j , is the time at which the pre-
viewed desired trajectory yd(t) within the jth decomposition
interval Id,j is decomposed, i.e.,

tdec,1 = 0, and for j > 1

tdec,j = tdec,j−1 + ∆Tdec, with
∆Tdec = Tp − T∗pa, and

Id,j = [tdec,j , tdec,j+1)

(7)

where T∗pa is the pre-actuation time (quantified a priori, see
Step I.4 below). In the rest of the paper, we denote the
corresponding trajectory considered at the tdec,j instant by
using the subscript “j”, e.g.,

yd,j(t) , yd(t), for t ∈ Id,j . (8)
To facilitate the implementation, we consider below in the

discrete-time domain instead, i.e., yd,j [i] = ȳd,j(iTs), with
all the time intervals (e.g., Id,j) replaced by their discretized
counterparts, respectively.

A. DLOT Technique

We present the DLOT technique as an algorithm of four
main steps.

1) Step I: Offline Preparation: The a priori preparation in-
cludes constructing libraries of input-output elements, charac-
terizing the hysteresis curves, and estimating the pre-actuation
time and the length of zero-extension (of the previewed desired
output—to avoid truncating the elements in the decomposition
[17], [18]).
Step I.1: Construction of Libraries of Input-Output Bases
via Iterative Learning. We propose to construct two li-
braries, LH and LD, each consisting of pairs of input-output
elements for hysteresis and dynamics compensation, respec-
tively. Particularly, each element in libraries LH and LD will
have different amplitude (τi) or speed (sj), respectively,

LH =
{
H1(·, τ1),H2(·, τ2), · · · ,HNH

(·, τNH
)
}
,

LD =
{
D1(·, s1),D2(·, s2), · · · ,DND

(·, sND
)
}
,

(9)

where for each i = 1, 2, · · · , NH , and j = 1, 2, · · · , ND,
respectively,

Hi = ( ue,i(·, τi), γe,i(·, τi) ), (10)

are the output element at amplitude τi, γe,i(·, τi), and its
corresponding input element ue,i(·, τi), respectively, and

Dj = ( ve,j(·, sj), ye,j(·, sj) ), (11)

are the output element at speed sj , ye,j(·, sj), and its corre-
sponding input elements, ve,j(·, sj), respectively. Each ampli-
tude and speed factor, τi and sj , respectively, are within the
range of τi ∈ [τmin, τmax] and sj ∈ [smin, smax], respectively.
The use of elements at different amplitudes and different
speeds is for the efficiency in online decomposition/synthesis

(in Step II)—to accommodate desired outputs over a large
amplitude and speed variations. The amplitude and the speed
bounds can be easily quantified a priori (based on the tracking
requirements and the system characteristics.), and the speed
and amplitude factors can be chosen as a trade-off between
the offline learning effort and the online control effort, based
on the priori knowledge of the desired trajectory and the
hardware/effort constraints.
The output elements, ye,j(·, τi)s and γe,i(·, sj)s, are generated
by using B-spline of chosen order (e.g., 3rd-order B-spline)
and amplitude (specified by τi), B(t, τi), with

B(t, τi)

{
> 0, t ∈ (−pΨ, pΨ),

= 0, otherwise,
p ∈ N, (12)

and its time-shifted copies, B((t− δtk), τi) [22], where Ψ is
the pre-chosen knot period, and δtk is the shifting time given
by

δtk = kΨ, k ∈ Z, (13)
respectively. We further define the discretized knot period NΨ

as
NΨ , bΨ/Tsc , (14)

with Ts the sampling time.Moreover, it can be easily verified
[23] that B-splines are Lipschitz, i.e., there exists a constant
Lv > 0, such that
|B(t1, τi)−B(t2, τi)| ≤ Lv|t1 − t2|, for ∀t1, t2 ∈ <. (15)

The input elements, ue,i(·) and ve,i(·), to track each output
elements, γe,i(·) and ye,i(·), correspondingly, are obtained
using ILC techniques a priori. To isolate and decouple
the hysteresis and dynamics compensation, the speed of the
elements in LH is kept low so that the vibrational dynamics of
the hysteresis system, Φ(·) in System (1), is not excited when
finding the input elements ue,i(·)s. Similarly, the amplitude of
the elements in LD is kept small so that the hysteresis effect,
H[·] in System (1), can be ignored when finding the input
elements ve,i(·)s in LD. Then, iterative control techniques
such as the inversion-based iterative learning control (IIC)
technique [11], [14] can be utilized to compensate for
the hysteresis effect or the vibrational dynamics effect,
respectively (see Secs. II-A2, II-A3 later). Moreover, the
system variations (in hysteresis and/or dynamics) can be
easily accounted for without loss of tracking performance by
updating the library immediately before the operation—the
small size of the libraries renders such an update practically
efficient.

Step I.2: Quantification of the Zero-extension Length By
using the decomposition via redesign-and-extension technique
proposed in [23], the previewed desired output (of, in general,
non-zero boundary values) can be decomposed with arbitrary
precision by using only one B-spline and its time-shifted
copies. Specifically, at each jth decomposition instant
tdec,j , the desired output in the first 2pNΨ − 1 sampling
period of the decomposition interval, yd,j(t) or vd,j(t) for
t ∈ [tdec,j , tdec,j + (2pNΨ − 1)Ts ), will be redesigned to
be smoothly left-transited (i.e., towards tdec,j−1) to zero, and
then further extended with zeros (see Step II.1 below). The
length of the zero-extension K∗o can be quantified based on
the required decomposition (approximation) accuracy and the
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characteristics of the B-spline (The details are omitted due to
space, see Ref.[23]).

Step I.3: Characterization of the Hysteresis Input-Output
Mapping The values of the Preisach model of the inverse
mapping (3) at a sequence of pre-chosen discrete weight
values, (αi, βj),

f(αi, βj) ,
∫ αi

βj

∫ y

βj

µ(x, y)γxy[v(t)]dxdy. (16)

are quantified experimentally by applying a sequence of
inputs of varying amplitudes (e.g., a triangle wave with
ascending and then descending amplitudes) at low speed
and measuring the corresponding outputs, where the discrete
values of αi ∈ [αmin, αmax] and βj ∈ [βmin, βmax] are
chosen based on the range of the output in the given tracking,
i.e., the αis and βjs shall cover the hysteresis mapping
appearing in the given output tracking operation, and the
discretization-level shall be chosen high enough such that
the discretization-caused modeling error can be ignored for
the given tracking precision. The obtained sequence of the
inverse mapping in Preisach model will be used later to
obtain the reference intermediate input vd(t) for finding
the hysteresis-compensating input via decomposition (See
Subsec. II-A3 below). Identification of the mapping at
discrete weight values (16) is more efficient than identifying
the weighting function µ(α, β) itself which is needed in other
Preisach-based hysteresis compensation techniques [24].

Step I.4: Estimation of the Element Density DH
∗ and the

Preactuation Time T∗pa The element density D∗H can be
quantified based on the hysteresis characteristics of system (1)
and the previewed desired output (see Eq. (10) in Ref.[16]),

D∗H = 2

⌈
L∗HLv
ε∗H

⌉
(17)

where, respectively, Lv is defined in Eq. (15), L∗H = LH(Av)
is the Lipschitz constant (in Eq. (4)) depending on the range
of the desired intermediate output Av , and ε∗H is the desired
tracking precision in terms of the desired intermediate output,
i.e., ‖vd,j(t) − vj(t)‖L∞,T

≤ ε∗H, for DH,j ≥ D∗H, for
vd,j(t), (t ∈ Idec,j) the previewed desired intermediate output
at the jth decomposition instant, and DH,j the element density
used in the jth decomposition instant, respectively.

The preactuation time T∗pa, i.e., the amount of preview of
the future desired trajectory needed, can be quantified based
on the characteristics of the linear dynamics, Φ(·), particularly,
the non-minimum phase part of Φ(·). Readers are referred to
Ref. [17], [18] for the details.

2) Step II: Online Dynamics Compensation via Superposi-
tioning: The two libraries LH and LD constructed above will
be used online to decompose the previewed desired output at
each decomposition instant tdec,j (j = 1, 2, · · · )—not at every
sampling instant!
Step II.1: Trajectory Scale-down to Avoid Hysteresis Ef-
fect The previewed desired output yd,j [·] will be first scaled
down in amplitude

ȳd,j [j] = λjyd,j [j], with λj sup
i∈Id,j

|yd,j [i]| ≤MH (18)

where λj ∈ (0, 1), and MH ∈ <+ is a pre-chosen constant
below which the hysteresis effect becomes negligible.

t(×NΨ)

yd

a)

ȳd,j �1

ȳex,j �1

ȳd,j

K j K j +1

0 1 2
. . . mj � lm. . . mj . . . mj +1 t(×NΨ)

yd

b)

ŷd,j = ȳd,j � ȳex,j �1

Output 
elements

Decomposition
Instants

K j � K o K j +1

0 1 2 . . . mj � lm . . . mj
. . . mj +1

K j

:

Fig. 2: (a) Extension of the summed weighted output elements
(red-dashed curve) for the (j−1)th decomposition interval into
the jth one, and (b) the redesign of the desired trajectory in
the first 2pNΨ− 1 sampling periods of the jth decomposition
interval by using the above extension in (a) (blue-dashed line),
and the left-zero-extension.

Step II.2: Trajectory Redesign to Avoid Truncation in the
Decomposition The decomposition via extension technique
will be applied to the scaled-down desired output within each
jth decomposition interval. Specifically, we redefine ŷd,j(t) as

ŷd,j [i] =





0, i = Kj −Ko, Kj −Ko + 1, . . . , Kj − 1;

ȳd,j [i]− ȳex,j−1[i],

i = Kj , Kj + 1, . . . , Kj + 2pNΨ − 1;

ȳd,j [i],

i = Kj + 2pNΨ , . . . ,Kj +
⌊
T∗pa/Ts

⌋
.

(19)
where Ko ≥ K∗o is the zero-extension length as quantified
in Step I.2 previously, and ȳex,j−1[·] is the (j − 1)th “tail”
trajectory generated from the (j − 1)th decomposition—the
weighted sum of those output elements employed in the
preceding (j − 1)th decomposition that enters the current
decomposition period Id,j (see the red-dashed curve in Fig. 2)

ȳex,j−1[i] =





mj+p∑

k=mj−p

ḡk,j−1ye,j [i− kNΨ, sj−1],

i = Kj , Kj + 1, . . . ,Kj + 2pNΨ − 1;

0, otherwise,
(20)

where ḡk,j−1s are the coefficients employed in the preceding
(j − 1)th decomposition, and ye,k[·, s∗]s are the output ele-
ments in library LD at the selected speed s∗, respectively. The
above redesigned desired output for the jth-decomposition,
ŷd,j [·], now starts at zero with a long enough zero-period
(see Fig. 2 (b)) so that the element truncation is avoided with
guaranteed decomposition accuracy [23].
Step II.3: Output Decomposition without Element Truncation
The smoothly-extended trajectory ŷd,j [·] will be decomposed
by using the output element at chosen speed sj in library LD,
ye[·, sj ], and its time-shifted copies, as

ŷd,j [j] ≈
Nd∑

k=0

ĝk,jye,j [j − kNΨ, sj ] , ŷdd,j [j], such that,

‖ŷd,j [·]− ŷdd,j [·]‖2 ≤ εd
(21)

where, respectively, ye,k[j, sj ] is as given in Eq. (11), εd ∈ <+

is a pre-chosen threshold for the desired approximation accu-
racy, and the decomposition coefficients, ĝk,js, are obtained
via the least square minimization [22], [23].
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Then, the decomposition coefficients corresponding to the
scaled-down previewed desired output ȳd,j [·] will be obtained
via

ḡk,j =





ḡk,j−1 + ĝk,j , k = mj − le, mj − le + 1,

. . . , mj + q;

ĝk,j , k = mj + q + 1, mj + q + 2,

. . . , mj+1 + q.

(22)

where ḡk,j−1s and ĝk,js are given in Eqs. (20) and (21),
respectively.
Step II.4: Intermediate Input (Output) Synthesis via Super-
positioning Finally, the corresponding input (to compensate
for the vibrational dynamics) is obtained via the superposition
principle as [17]

vd,j [i] = λj

Nd∑

k=0

gk,jve,j [i− kNΨ, sj ] (23)

where λj is given by Eq. (18), and ve,k[·, sj ]s are the input
element at speed sj in library LD, ve[·, sj ], and its time-shifted
copies, each corresponding to the output elements ye,k[·, sj ]
in Eq. (21), respectively.

3) Step III: Online Hysteresis Compensation via Almost
Superpositioning: The input to further compensate for the
hysteresis effect will be obtained in the following three steps.
Step III.1 Intermediate Output Slow-down and Decomposi-
tion To decouple and isolate the hysteresis compensation, the
intermediate desired output vd,j(t) is, first, temporally scaled
(slowed) down by the speed-factor ηj ∈ <+,

v̄d,j(t) = vd,j(
t

ηj
), for i ∈ Id,j (24)

where the speed factor ηj ≥ 1 is chosen such that the
dynamics effect of the hysteresis system is not excited during
the tracking of v̄d,j(t). The slowed-down intermediate desired
output v̄d,j(t) for t ∈ Id,j is then decomposed by using
the hysteresis-compensation library LH , following the same
procedure as in Steps II.1 to II.3 above,

v̄d,j [i] ≈
Nh,j∑

k=0

ḡk,jγe,j [i− kNΨ, τj ], i ∈ Id,j , (25)

where γe,k[i, τj ]s are the output element at amplitude of τj
in library LH, γe[i, τj ], and its time-shifted copies, and the
number of elements Nh is determined by the required element
density for hysteresis compensation (see Eq. (17)) as

Nh,j ≥ N∗h,j = D∗HTH,j (26)
where D∗H has been quantified in Step I.4 (see Eq. (17)), and
the effective trajectory length TH,j is quantified via Eq. (6),
respectively.

Step III.2 Input Synthesis for Hysteresis Compensation The
input to account of the hysteresis effect H[·] will be obtained
as

ūd,j [i] =

Nh∑

k=0

hk,j ḡk,jue,j [i− kNΨ, τj ]. (27)

where ue,k[i, τj ]s are the input element at amplitude τj in
library LH , and its time shifted copies, ḡk,js are as those given
in Eq. (25), and hk,js for each k = 0, · · · , Nh are obtained
recursively by
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( , )

( , ) ( , )

a

cb

p

e

g
f

d

α

β

0
p

1

pi

p
i+1

p
o-1 po

α0αβ 00( , ) α0

0β
0

0

β0 β0

α0

(a)

t

v(t)

α0

α1

α2

α3

β0

β1

β2

(b)

Fig. 3: (a) The Preisach plane and (b) an exemplary output
trajectory, where the coordinates of the vertex p0, p1, of the
stair-case curve, (αo, β0) and (α1, β1), respectively, in (a)
correspond to the consecutive local maxima-minima of the
output trajectory shown in (b). )

h0 = 1,

hk,j =
1

ḡk,jGl
(ūd[k]− hk−1,jgk−1,jcp)

+
l∑

i=2

(−1)(1+i)ci−1
p

ḡk,j
∏l
k=l−i+1Gk

ūd[k + i− 1],

(28)

where ūd[·] are the reference input elements obtained by
using the Hysteresis input-output mapping obtained in Step
I.2 (Eq. (16)),

ūd(t) = −f(α0, β0)+

2

[
Nm+1∑

k=1

f(αpk−1, βpk−1
)− f(αpk , βpk)

]
,

(29)

with {αpk , βpk} the coordinates of the vertex pk for k =
0, 1, . . . , Nm in the Preisach plan (see Fig. 3), where the vertex
pk corresponds to the kth pair of consecutive local maxima and
minima of the previewed desired intermediate output v̄d,j [·]
as in Eq. (24), i.e., the coordinate of pi is (βpi , αpi) when
i is odd, and (βpi , αpi+1

) when i is even (see Fig. 3 as an
example). Moreover,

cp =
ue[−1]

ue[0]
, and cq , ue[1]/ue[0],

G1 = 1, Gi = 1− cpcq
Gi−1

, for i = 2, 3, . . . , l,
(30)

Step III.3 Final Input for both Hysteresis and Dynamics
Compensation Finally, the control input to compensate for
both hysteresis and dynamics is obtained via temporal scale
(speed-up) with the same speed factor ηj ,

ud,j [i] = ūd,j [bηjic] , for i ∈ Id,j (31)
4) Step IV: Online Adaptation and Optimization: To ac-

count for random disturbances and system variations, adap-
tation factors γis are introduced to the decomposition coeffi-
cients as,

ud,j [i] =
k+2∑

j=k−1

(hj ĝj + αγj)ue[i, τ ]/τ, i ∈ Id,j,k, (32)

where Id,j,k is the kth decomposition knot period within the
jth decomposition period, and Λ∗ is the optimal adaptation
factor sequence defined as,

Λ∗ , [γ∗k−1, γ∗k , γ∗k+1, γ∗k+2]T , (33)
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that minimizes the following cost function of the predicted
tracking-error in L2-norm,

min
Λ

∑

i∈Id,j,k

(Y[i]TΛ− Ω[i, e[i]])2, (34)

is given by

Λ∗ =


 ∑

i∈Id,j,k

Y[i])Y[i]T



−1

∑

i∈Id,j,k

Ω[t, e[i]]Y[i]. (35)

where
Y[i] = [ve[i− (k − 1)NΨ, τ ] ve[i− k −NΨ, τ ]

ve[i− (k + 1)NΨ, τ ] ve[t− (k + 1)NΨ, τ ]]
T
,
(36)

e[i] is the tracking error, and Ω[i, e[i]] is an innovation
function to predict the tracking error e[i] for i ∈ Id,j,k,

Ω[i, e[i]] = e[i−NΨ] + κΩ[i−NΨ, e[i−NΨ]]. (37)
The innovation function Ω[i, e[i]] is chosen as the inverse of
the dynamic part of the system to account for the dynamic
effects.

III. HIGH-SPEED NANOPOSITIONING EXPERIMENTAL
EXAMPLE

We demonstrate the proposed DLOT approach for output
tracking by implementing it to the trajectory tracking of a
piezoactuator for lateral scanning (x, y direction) on an atomic
force microscope (Dimension-ICON, Bruker Nano. Inc.). The
first resonant frequency of the piezoactuator was at ∼650
Hz, with full displacement range around 72 µm. The control
algorithm was designed and implemented in the MATLAB-
xPC-target (Mathworks, Inc.) via a data acquisition system
(PCI-6259, National Instrument Inc.).

A. Implementation of the Decomposition-learning-based Out-
put Tracking

1) Offline Preparation (Step I): Library Construc-
tion The 3rd-order uniform B-spline of 30 seconds dura-
tion (slow enough to avoid exciting the dynamics) at 20
different amplitudes were employed as the output elements
γe,i(·, , τi) for i = 1, 2, · · · , 20 of the hysteresis-compensation
library LH . The corresponding input elements ue,i(·, τi) (i =
1, · · · 20) were obtained by using the IIC technique [11], as
shown in Fig. 4 (a). The maximum of the input elements φ(τ)
as a function of the amplitude factor τ ,

φ(τi) = sup
t
|ue(t, τi)| (38)

was measured directly (see Fig. 4 (b)).
To test the dynamics compensation performance, the

3rd-order B-splines at three different speeds were used
as the output elements, ye,i(·, si) for i = 1, 2, 3, of the
dynamics-compensation library LD. The corresponding input
elements, ve,i(·, si) (i = 1, 2, 3) were also obtained via
the IIC technique, and the tracking of one low-speed and
one high-speed output element are shown in Fig. 4 (c), (d),
respectively, where to test the robustness of the library update,
the tracking obtained after over 12 months period (with the
same input element) is also compared to those obtained after
the update.

Preisach Modeling of the Hysteresis The weighted-
integration function f(·; ·) of the Preisach model was
identified by using a sinusoidal wave with decaying
amplitude as the input, after the local memory effect had been
removed by driving the piezoactuator to the full range, where
a fine-enough discretization level was chosen at 100 (with
discretization error < 0.31% of the total displacement range).
The model was validated by comparing the experimentally
measured output with the predicted one (under a sinusoidal
wave input with a varying amplitude), as shown in Fig. 5(a).
The major hysteresis loop presented in Fig. 5 (b) demonstrated
that the hysteresis effect was, indeed, pronounced.

Quantification of the Preactuation Time Tpa and the
element density D∗H The preview time for dynamics T∗pre
was quantified as described in [17], and the element density
D∗H was also quantified as described previously, where the
decomposition caused approximation error was around the
noise level.

B. Online Output Decomposition, Input Synthesis and Opti-
mization (Steps II-IV)

To demonstrate the proposed approach for simultaneous
hysteresis-dynamics control, a trajectory with peak-to-peak
amplitude of 67.6 µm (94% of the total displacement range)
at two different speeds was chosen as the desired trajectory
(see Figs. 6, 7). Only a finite preview of the desired trajectory
with preview time of Tp = 500, and 20 ms, respectively, was
used in the tracking at the low, and high speed, respectively.

In online implementation, first, during each decomposition
period, the corresponding portion of the previewed desired
trajectory yd(t) was spatially scaled down by 20 times and
then decomposed by using the dynamics compensation library
LD via linear superposition to obtain the intermediate output
decomposition coefficients ḡks (see Eq. (22))) and the inter-
mediate input vd(t) (after scaling the signal back);
Secondly, the intermediate output vd(t) was slowed down by
210, 2625, and 5250 times for the low, medium, and high
speed, respectively, and then decomposed by using the hystere-
sis compensation library LH . Finally, the compensation factors
hks was obtained by Eqs. (28) (30), and then online updated
via Eqs. (32)- (37), and then combined with the intermediate
decomposition coefficients gks to obtain the control input.

C. Experimental Results and Discussion

For comparison, tracking by using a well-tuned PI
controller and the DC-gain method (where the control
input was obtained by simply scaling the desired output
by the DC-gain of the system) were also conducted in the
experiment, as shown in Figs. 6-7 for the low, medium and
high speed, respectively. The comparison of the open-loop
to the closed-loop frequency response in Fig. 8 shows that
with the PI-controller, the bandwidth of the system was
well maintained while the resonant peak was removed. The
corresponding relative RMS and relative maximum tracking
errors are compared in Table. I. Moreover, we quantified
the speed of the desired trajectory by speed ratio λs defined
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as λs = (
∑N
i=1 Âiωi)/ωc, where ωc is the closed-loop

bandwidth, and ωi and Âi are the jth major harmonic
frequency component (in the desired trajectory) and its
corresponding normalized amplitude, respectively. The speed
ratio of the low- and high- speed tracking was at λs = 0.0171
and λs = 0.481 for N = 6, respectively.

TABLE I: The relative RMS/Maximum tracking error of the
three methods at both low- and high- speed.

Relative RMS Relative Maximum
Low (%) High (%) Low (%) High (%)

DLOT 1.84 3.96 3.6 5.17
PI 2.12 22.79 5.54 25.3

DC-gain 18.32 26.59 14.4 33.7

The experimental results clearly demonstrated the perfor-
mance of the proposed method in simultaneous hysteresis-
dynamics compensation to achieve accurate tracking, partic-
ularly, during high-speed, large-amplitude tracking. At low
speed (where the hysteresis effect was pronounced, as mani-
fested by the tracking error of the DC-gain clearly in Fig. 6),
the hysteresis effect was almost completely removed by both
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Fig. 6: Comparison of (a) the tracking results by using the
proposed DLOT approach to those obtained by using a well-
tuned PI controller and the DC-gain method, and (b) the
corresponding tracking error for low-speed tracking.
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Fig. 7: Performance comparison as in Fig. 6 for high-speed
tracking.

the proposed method and the PI feedback. However, in
medium and high speed tracking, where both the hysteresis and
dynamics effects were expressed, the tracking error of the DC-
gain method clearly showed the combined hysteresis-dynamics
effects (see Figs. 6, 7). The tracking of the PI-feedback control
degraded as the spectrum of the desired output approached
to the bandwidth of the closed-loop system, whereas with
the proposed technique, a precision tracking with only 3∼4%
RMS tracking error was still maintained (see Table 1).

The experimental results also demonstrated the efficacy of
the proposed approach in exploiting the benefits of offline
learning for robustness and online control efficiency. As shown
in Fig. 4 (c), (d), tracking of the elements in the libraries was
almost fully restored with a few iterations (∼3 for each output
element) despite pronounced tracking error caused by large
system (dynamics and hysteresis) behavior changes in a rather
long time period (over 12 months). Moreover, only tracking of
23 output elements (at a total of 20 different amplitudes and
three different speeds) needed to be learned a priori, and for
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each decomposition, only 56 elements were needed to meet
the element density requirement for hysteresis compensation
(see Eq. (17)), and the computation was distributed to a total
of less than 5 % of the total number of sampling periods over
the entire tracking process. Thus, the online implementation
is highly efficient without requiring heavy computations, and
by updating the libraries right before the online tracking, the
hysteresis and/or dynamics changes be easily accounted for
without trading off tracking performance. Therefore, the ex-
perimental results also demonstrated the efficacy and efficiency
of the proposed technique for control of hysteresis systems.

CONCLUSION

In this paper, a decomposition-learning-based output track-
ing approach to achieve simultaneous hysteresis and dynamics
control was proposed for non-repetitive operations at high
speed and large range. The proposed DLOT technique, pre-
sented as a four-step algorithm, consisted of offline con-
struction of libraries of pairs of input-output elements, and
online trajectory decomposition and input synthesis, along
with temporal and spatial scaling for hysteresis and dynamics
separation and decoupling. Experimental implementation on a
piezoelectric actuator in high-speed large-range tracking was
presented to demonstrate the proposed DLOT technique in
compensating for both hysteresis and dynamics effectively and
efficiently.
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